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Abstract Forests are often touted for their ecosystem services, including outdoor recre-
ation. Historically forests were a source of danger and were avoided. Forests continue to
be reservoirs for infectious diseases and their vectors—a disservice. We examine how this
disservice undermines the potential recreational services by measuring the human response
to environmental risk using exogenous variation in the risk of contracting Lyme Disease. We
find evidence that individuals substitute away from spending time outdoors when there is
greater risk of Lyme Disease infection. On average individuals spent 1.54 fewer minutes per
day outdoors at the average, 72 U.S. Centers for Disease Control and Prevention, confirmed
cases of Lyme Disease. We estimate lost outdoor recreation of 9.41h per year per person in
an average county in the Northeastern United States and an aggregate welfare loss on the
order $2.8 billion to $5.0 billion per year.

Keywords Adaptation · Resource allocation · Risk · Economic-Epidemiology · American
Time Use Survey (ATUS) · Travel cost

1 Introduction

For all but the last instant of human existence forests were scary places, full of fangs
and claws, providing net disservices. More recently, humans have learned that forests pro-
vide many services, and have reduced the fangs and claws, especially in North America.
In North America, and elsewhere, a major benefit of forests is the provision of recre-
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ational opportunities (De Groot et al. 2002, 2012). Yet, the dangers of forests have not
been completely eliminated. Perhaps the largest disservice that forests provide is a safe
haven for infectious disease and the vectors that carry them. Globally, many novel emerg-
ing infectious diseases are associated with forests and wilderness areas (Patz et al. 2005).
However, in the heavily populated northeastern United States the pathogen most likely
to lurk in a forest as well as in local wooded and grassy areas is Borrelia burgorferi,
the infectious agent causing Lyme Disease, which is transmitted by the black legged
tick.

The existence of pathogens in forests and outdoor spaces reduces the recreational value
of forests and outdoor spaces relative to a tick and Lyme Disease-free system. The loss
of non-market income [i.e., income not flowing through the cash draw (Fisher 1906)] rep-
resents an income effect, but this income effect can be, and often is, partially offset by a
substitution effect. An income effect exists irrespective of any treatment costs, and exists
because people are “endowed” with a lower quality asset that provides lower valued ser-
vice flows. The income effect is the forgone utility flow that results from substituting to
lower quality services in response to the higher expected cost of utilizing services as a result
of disease risk. All individuals who would consume outdoor leisure absent Lyme Disease
risk suffer a welfare loss because of this effect. The direct expenditures on treatment of
infection and expenditure on preventive measures such as insect and tick repellent or for-
gone recreational expenditures – the two measures most used to measure the cost of disease
(Zinsstag et al. 2007; Perrings et al. 2014) are at least partially transfer payments, and are
unlikely to reflect the true economic costs.1 Individuals can substitute lower valued activities
to partially offset these losses. Recent studies in economic epidemiology have hypothesized
(Fenichel et al. 2011) and uncovered (Fenichel et al. 2013; Bayham et al. 2015; Springborn
et al. 2015) behavioral responses – substitution effects – to disease risk. In the case of Lyme
Disease, people may allocate time away from outdoor activities in order to avoid infection.
Indeed, survey studies have found that residents in the Northeast view avoiding tick habitat
as a primary preventative activity (Herrington et al. 1997; Phillips et al. 2001; Herrington
2004).

We focus on Lyme Disease in the Northeastern United States to test the behavioral substi-
tution hypothesis and estimatewelfare loss. LymeDisease is prevalent across the northeastern
United States and around the Great Lakes. It causes fever, headaches, fatigue and a skin rash,
and requires several weeks of antibiotics to treat, causing utility loss to infected individuals.
It can also be prevented by the use of repellents and removing ticks, as well as costly efforts
to remove tick habitat.2 Lyme Disease is therefore costly if contracted and costly to prevent.
Individuals can be expected to substitute away from activities associated with Lyme Disease
risk. If there is a substitution effect, there is likely an income effect, as the risk of Lyme
will make individuals worse off compared to a world without Lyme Disease. This income
effect is the welfare loss due to the risk of Lyme Disease. We test the hypothesis that people
substitute away from outdoor leisure activity in response to Lyme Disease risk, using county
level case reports from the CDC and outdoor and indoor activity reported in the American
Time Use Survey (US Department of Labor. Bureau of Labor Statistics 2015).3 Evidence of

1 Given large imperfections in medical service and health insurance markets, the degree to which treatment
costs reflect true economic cost or transfer payments is an important research question beyond the scope of this
paper. Some of these expenditures are certainly real costs. By excluding them from our analysis we provide a
lower bound on the total welfare loss associate with Lyme Disease.
2 http://www.cdc.gov/lyme/, or the ridiculously costly approach of vaccinating short-lived intermediate hosts
like mice (Tsao et al. 2004).
3 http://www.cdc.gov/lyme/stats/index.html.
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a substitution effect in addition to an income effect leads to the question, “how much would
people be willing to pay for a Lyme Disease free world?”

We contribute to the literature on ecosystem services and economic epidemiology. First,
we show how standard microeconomic theory related to income and substitution effects
maps to non-cash income derived from ecosystem services. To do this we consider utility
maximization subject to a budget constraint that includes leisure time and risk of infection,
similar to the literature on the valuation of ecosystem quality (Gallagher and Smith 1985;
Smith 1987; Foster and Just 1989; Phaneuf and Requate 2017). This analysis highlights
that accounting for income and substitution effects associated with changes in the quality
of ecosystem services is important, and ignoring these behavioral effects can easily lead to
underestimation when only cash income is considered. Second, we use spatial variation in
LymeDisease risk across the northeastern United States to test the hypothesis that individuals
substitute away from “consuming” ecosystem services when the quality of those services is
diminished or the cost or risks of consuming the ecosystem service is increased. In so doing,
we contribute to the emerging literature on behavioral responses to infectious disease risk and
feedbacks to infection processes. In the case of Lyme Disease we show that understanding
these feedbacks is important for measuring the prevalence of infectious agents and welfare
loss. Specifically, we apply a GMM estimation strategy (Arellano and Bond 1991; Roodman
2009), and show the relationship between reported Lyme Disease cases and time outdoors is
endogenous (one typicallymust be outdoors to contract Lyme). Therefore, case counts are not
a valid index of disease prevalence in the environment. After controlling for the endogeneity
of Lyme Disease risk, we find that in locations where cases are more prevalent, people spend
less time outdoors relative to the counterfactual case of lower or no disease prevalence.

2 Theoretical Model

The canonical microeconomic consumer problem involves an agent choosing between two
goods subject to an additivemonetary budget constraint (Varian 1992). Foster and Just (1989)
use a model with uncertainty to show an increase in the risk and uncertainty related to a bad
causes an individual to reduce his exposure. We follow the canonical models that include a
quality attribute (Freeman et al. 2014; Phaneuf and Requate 2017) and Foster and Just (1989)
to consider the choice of whether to engage in outdoor activities or spend time indoors, with
one small difference. We are interested in the case where the increased risk of contracting
Lyme Disease (where risk consists of the probability and the cost of suffering from Lyme
Disease) increases the expected cost of the outdoor experience. Lyme Disease risk is the
quality attribute that individuals cannot directly effect. However the quality attribute is not
ambient, individuals are only exposed to Lyme Disease through allocating time to outdoor
activity. Therefore, we restrict the general model (Freeman et al. 2014; Phaneuf and Requate
2017) so that the shadow price of Lyme Disease risk is a component of the price of outdoor
time. Individuals choose to distribute their leisure time between outdoor activities, y, and
indoor activities, z. The risk (the damages and probability) of coming into contact with
infected ticks and being exposed to Lyme Disease is represented by the index L , and depends
on the prevalence of infected ticks in an area. Individuals maximize utilityU (y, z,m) subject
to a budget constraintm = py(L)y+pzz, wherem is full income (Phaneuf andRequate 2017)
and py(L) and pz are the expected costs of each activity, which include the opportunity cost
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of time, regardless of whether Lyme Disease is actually contracted.4,5 The expected cost of
outdoor activity increases with risk of infection, ∂py

∂L > 0, because individuals must account
for the cost of potential infection in addition to the opportunity cost of time. We assume that
tick encounters are random so the component of outdoor leisure cost associate with Lyme
Disease is constant, conditional on the riskiness of the area, per unit time exposed to a given
area.6 Substituting the constraint into the utility function provides the representative agent’s
problem

maxy Ū = U

(
y,m − py(L)

pz
y

)
. (1)

The first order optimality conditions imply the relation,

dŪ

dy
=

∂U
∂y

py(L)
−

∂U
∂z

pz
= 0 (2)

where the marginal utility per dollar of outdoor activity,
∂U
∂y

py(L)
must be equal to the marginal

utility per dollar of indoor activity
∂U
∂z
pz
. The marginal utility per dollar of outdoor activity is

conditional on individual’s risk of contracting Lyme Disease risk in a given area, L.
Behavioral changes due to Lyme risk impact welfare. Changes in welfare depend on

implicit property rights and ability of individuals to substitute between activities (Freeman
et al. 2014). We directly observe a world with Lyme Disease (point A in Fig. 1) and are
interested in the effect of a reduction in Lyme Disease risk. If Lyme Disease risk is removed
then the price of outdoor activity py(L) falls to py(0) (Fig. 1). Individuals increase their time
spent outside, shifting from point A to point B. Individuals can also attain utility,U ′, through
an increase in income represented by the dashed budget line that is tangent to the utility
indifference curve at point C. The move from C to B represents the substitution effect, and
the move from A to C is the income effect. We relate this figure to our empirical specification
in greater detail in Sect. 3.1.

The Slutsky equation (Eq.3) (Varian 1992) formalizes the changes shown in Fig. 1.

dy
(
p∗
y, p

∗
z ,m

∗
)

dpy(L)

dpy(L)

dL
=

⎛
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(
p∗
y, p

∗
z , Ū

)
∂py(L)

−
∂y

(
p∗
y, p

∗
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∗
)

∂m
y∗

⎞
⎠ dpy(L)

dL
(3)

Increases in Lyme prevalence induces an effective income reduction, ∂y
∂m y∗ ∂py(L)

∂L , where

there is a change in the amount of time spent outdoors due to a change in income, ∂y
∂m ,

multiplied by the change in outdoor activity consumed, y∗, multiplied by the change in the

4 We assume that Lyme Disease related decisions do not influence income from labor, which implies time is
not reallocated to labor. We find no evidence of time reallocation to labor in the empirical section of the paper.
5 The canonical model (Freeman et al. 2014; Phaneuf and Requate 2017) express U slightly more generally
as U (y, z,m, L). In the canonical model individuals experience an ambient level of the quality attribute, in
this case L . In our setting, individuals only experience a level of L if they consume y, which is a non-essential
good. This restriction allows us to derive an outdoor time demand function that nests inside the general demand
function for y presented in the canonical model. Importantly, everyone who alters behavior to avoid infection
suffers a welfare loss from Lyme Disease, not just the people who contract infection.
6 Increased use of an area by people does not increase the prevalence of infected ticks. Humans do not shed
enough pathogen to infect new ticks, so there is no feedback from people to quantity of infected ticks.
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Fig. 1 Income and substitution
effects associated with the
optimization of activity choice
subject to a time budget

In
sid

e 
ac

tiv
ity

, z
I

A
B

C

S

price of outdoor activity that results froma change in the prevalence of LymeDisease, ∂py (L)

∂L .7

A greater expected price of outdoor activity causes individuals to be worse off because they
cannot afford their Lyme-free bundle of activities. Increases in Lyme prevalence also lead to
a substitution effect, where the change in the relative price of outdoor activity compared to
indoor activity causes individuals to substitute towards indoor activities that would otherwise
be less preferable.

3 Empirical Model

Wehypothesize that individuals respond to an increase in the risk of contractingLymeDisease
by reducing the time they choose to spend on outdoor recreation.8 Fragmented areas of forest
have a higher density of infected ticks. In theNortheast, suburban areas including recreational
parks, baseball diamonds, and soccer fields are fragmented forests with a nontrivial threat of
Lyme Disease (Allan et al. 2003). We regress time spent on outdoor activity away from one’s
home onLymeDisease cases in the area.We include characteristics of the region to control for
other factors that may influence outdoor recreation. However, the act of recreating outdoors
exposes people to risk that directly influences the likelihood of a LymeDisease case occurring
in a region. Thus, Lyme Disease cases and time spent outdoors are jointly determined, and
Lyme Disease prevalence is endogenous.

3.1 Estimation and Identification Strategy

We test the hypothesis that an increase in the risk of Lyme Disease reduced the amount
of time people spend on outdoor recreation. Our goal is to identify the causal effect of
Lyme Disease risk, measured by prevalence in the area, on outdoor recreation decisions.

7 The direct effect of a change in Lyme Disease risk is multiplicatively separable in the Slutsky equation due
to our restrict that the quality effect of Lyme Disease risk to enter through the full price of consuming outdoor
recreation.
8 A list of all activities included in the analysis is provided in Table3 in the appendix. All activities are also
limited using the ATUS variable TEWHERE to include only those taking place outdoors and away from home.
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However, regressing outdoor recreation time on the prevalence of Lyme Disease within
an area is not valid because Lyme prevalence is clearly not exogenous as people acquire
infection when they spend time outdoors. Consequently, OLS estimators are likely biased
and inconsistent.

We employ a dynamic panel estimation strategy following Arellano and Bond (1991) and
Blundell and Bond (1998) designed to address the endogeneity of Lyme Disease prevalence
and outdoor recreation time. TheGMMestimator jointly estimates a system of two equations:
one in levels, and one in differences.

yit = αyi,t−1 + δ1Lit + δ2L
2
i t + xi tβ + ciγ + ψi t where ψi t = ui + εi t (4a)

y∗
i t = αy∗

i,t−1 + δ1L
∗
i t + δ2L

∗2
i t + x∗

i tβ + ε∗
i t , (4b)

where yit is the average daily time in minutes spent on outdoor activities from May to
November in year t by individuals who live in geography i (county or Census Statistical
Area), Lit is the number of cases of Lyme Disease reported in geography i in year t where we
include a squared term to allow for a nonlinear response to disease risk, xi t is a vector of time-
varying controls that include annual averages of maximum and minimum daily humidity and
temperature in each area as well as precipitation, ci is a vector of time-invariant controls that
include the percentage of each area that is classified as wilderness, municipal park, national
park and the local expenditure on parks and recreation, and ψi t is an idiosyncratic error
where ui is fixed over time and εi t varies over time and geography. The asterisk denotes the
forward orthogonal transformation alternative to the first-difference transformation (Arellano
and Bover 1995).9 The moment conditions are constructed based on Eqs.4a and 4b, and the
parameters are estimated jointly.

Several empirical issues complicate our ability to establish a causal relationship between
Lyme Disease cases and changes in outdoor recreation. The spatial variation in permanent
physical characteristics of geographic areasmay influence the attractiveness of outdoor activ-
ity. For example, some areas have greater access to wilderness, national parks, or municipal
parks. Urban areas may have little access to outdoor activities, so that most recreation is
performed indoors. We account for this variable access with time-invariant controls, ci , that
capture the availability of outdoor amenities. Weather also likely influences the attractive-
ness of outdoor activities. We control for temperature, precipitation and humidity, which
at high levels may discourage certain forms of outdoor activity. We focus on the Northeast
United States in the warmweather months, which are characteristically humid andmaymake
outdoor recreation less desirable.

Individualsmay choosewhere to live based on their tastes and desires for access to outdoor
amenities (i.e., sorting). Median income and education levels vary by geography, and these
are most certainly related to the desire and ability to spend time on outdoor recreation.
We include geography-specific fixed effects in several specifications to control for these
confounding factors. We also include lagged values of outdoor recreation time to control for
habit formation. For many people hiking, running or playing sports is a hobby that may have

9 The forward orthogonal transformation of x is defined as

x∗
i,t ≡

√
Tit

Tit + 1

⎛
⎝xit − 1

Tit

∑
h>t

xih

⎞
⎠ ,

where the sum is taken over all future available observations, Tit (Roodman 2009). This transformation
preserves observations when there are gaps within panels that would otherwise be removed under a first-
difference transformation.
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required significant investments in physical training or equipment. Their past habits may
inform their current levels of activity.

Our identification strategy relies on using Lyme Disease prevalence from past years as
instruments for endogenous covariates, contemporaneous Lyme Disease prevalence and the
past year’s outdoor recreation time (lagged dependent variable). The validity of our instru-
ments depends on whether Lyme Disease prevalence in the past is correlated with current
decisions to recreate outdoors only via current LymeDisease prevalence. Specifically, lagged
observations of Lyme Disease cases, Li,t−s where s ≥ 2 lags, instrument current observa-
tions in the transformed Eq.4b, and lagged transformed10 case observations, ΔLi,t−s where
s ≥ 2 lags, to instrument current observations in the levels Eq.4a. The model is exploiting
the information from the observations and deviations from trends in the time series within
each geography. In addition, all exogenous covariates, xi t and ci , are used as instruments
when included in the specification.

The logic behind our choice of instruments follows from infectious disease dynamics. The
positive trend of cases during the early stages of an outbreak signals an increase in future
cases.Moreover, decisions to spendmore time outdoors today have no direct impact on Lyme
Disease prevalence in the past in contrast to the jointly determined contemporaneous Lyme
Disease prevalence. However, lagged LymeDisease casesmight still be endogenous if lagged
outdoor recreation time is omitted from the model but actually drive lagged cases (omitted
variables bias). The Arellano–Bond test for autocorrelation provides evidence that outdoor
recreation trends (first differences) of lags two and further are not significantly correlated
with contemporaneous outdoor recreation trends. This suggests that lags two and deeper of
confirmed cases are exogenous and valid instruments for contemporaneous cases.

All regressions are conducted in Stata 12 (StataCorp 2011) using the xtabond2 package
(Roodman 2009). We use the two step estimator that is robust to within-panel autocorrela-
tion and heteroskedasticity. Standard errors are estimated based on the two-step correction
(Windmeijer 2005).

3.2 Data

The data for this study come from several sources spanning theNortheasternUS andNorthern
Midwest, and the final dataset spans from 2003 to 2012. The CDC’s website provides Lyme
Disease case count by year and county code for the years 2000–2014 (CDC 2015).11 Values
are the number of reported cases, which from 2000 to 2007 reflect a previous case definition
that changed in 2008. The 2008 case definition allows the reporting of confirmed and probable
cases. The case definition from 2000 to 2007 required either discovery of the initial skin
lesion, or a late manifestation of Lyme Disease that consisted of joint swelling, arthritis, or
symptoms in the nervous or cardiovascular systems aswell as lab confirmation. This definition
was updated in 2008 so that confirmed cases required either the initial lesion with known
exposure to Lyme Disease, or the lesion with no known exposure but lab confirmation, or late
manifestation with lab confirmation. We used confirmed case counts under the relevant case
definition at the time. Cases by geographic location are plotted in Fig. 2. The bulk of cases
are located on the east coast of the United States, between Massachusetts and Washington

10 When transformed lagged observations are used as instruments in the levels Eq. 4a, the conventional first-
difference transformation, xi,t − xi,t−1, is applied. The forward orthogonal deviations transform would be
inappropriate for lags because it would include the contemporaneous observations as part of the average future
observations, which is hypothesized to be endogenous motivating the instrumental variables approach to begin
with.
11 http://www.cdc.gov/lyme/stats/index.html.
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Fig. 2 Maps showing a our study area, including all shaded counties, b average LymeDisease cases, c average
population, and d estimated minutes of lost outdoor time per year as a result of Lyme Disease risk. White
counties are not represented in the final dataset

D.C. There are additional loci of confirmed Lyme Disease cases in the Midwest, focused on
populated areas.

The American Time-Use Survey provides individual time-use data between 2003 and
2013 (US Department of Labor. Bureau of Labor Statistics 2015). The survey is adminis-
tered at the county (FIPS), Core Based Statistical Area (CBSA), or New England City and
Town Area (NECTA) level depending on population to ensure anonymity. We refer to all of
these as geographies. Survey respondents report a 24-h diary of activities and locations for
every minute of the day. The survey is conducted by phone, transcribed, and two individuals
independently encode the activity and location from nearly 400 activity codes and 25 location
codes.

We construct a measure of outdoor activity by year and by geography to conform to
the panel structure of the CDC Lyme Disease data. We compile a list of outdoor activities
including hiking or walking outdoors as well as organized sports, such as football, that
often involve spending time in grassy fields lined by higher grasses or trees.12 We calculate
the mean time spent on the set of outdoor activities in each year during the months May-
October, the time when ticks are most active, within each geography. Survey weights are
used to ensure that average durations are representative of the population in each year and
geography. Activities are tied to the individual’s geography of residence, so that it is assumed
all activities take place in the respondent’s county of residence. We also exploit information
in the ATUS on where an activity took place. We distinguish between outdoor activity away
from home and activities in the home and yard. We are careful to measure and exclude travel
time in one’s vehicle, which we use in our travel cost analysis.

12 The complete list is in the Appendix in Table 3.
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In order to account for the relative accessibility, quality of outdoor recreation opportuni-
ties, and tick habitat, we include several measures of the quality of outdoor recreation. These
include measures of the percentage of each area that is classified as wilderness, a municipal
park, a national park and the local expenditure on parks and recreation (Bieri et al. 2013).
These variables do not vary over time and measure the availability of high quality recreation
areas.

Weather likely influences individuals’ decisions to engage in outdoor recreation. We col-
lect daily precipitation, and maximum and minimum humidity and temperature in each
geography. We access the daily records from the National Weather Service weather sta-
tion located closest to the center of each area of geography (centroid of GIS polygon) using
the R package weatherData (Narasimhan 2015). In order to merge the weather data with the
Lyme Disease and activity data, we calculate the mean monthly precipitation during the tick
season, as well as the mean daily maximum temperature, minimum temperature, maximum
humidity, and minimum humidity over the months May–October in each year.

The amount of suitable tick habitat may affect the size and activity level of local tick
populations and thus the risk of acquiring Lyme during recreation activities. We use spatial
analysis at the county level to calculate the density of small patches (patches/sq km) of
deciduous forest less than 2 ha (Allan et al. 2003). We calculate the number of patches and
the percent area in patches in 2001, 2006, and 2011 from the National Land Cover Database
(Fry et al. 2011). We then linearly interpolate the predicted tick habitat area for all years
to be used as an additional instrument for confirmed Lyme Disease cases. In addition, we
gather county level population data from theUSCensus for population counts, or estimates of
counts for years between each Census, by county code (Census 2015). Population is plotted
in Fig. 2, and roughly matches the spread of Lyme Disease cases.

Our study area includes the Northeastern United States (from Virginia north) and the
Midwest. The extent of our study area is included in themaps in Fig. 2, howeverwedonot have
data for each individual county in these states. In order to match the various spatial extents of
the data, it was necessary to aggregate observations recorded at high spatial resolution (e.g.,
counties) up to the largest spatial extents. These units of measure range from New England
city and town area (NECTA) codes, Core-based statistical area (CBSA) codes and Federal
Information Processing Standard (FIPS) codes. ATUS activity data are primarily measured at
the NECTA or CBSA level, although they are measured at the FIPS level when areas are not
contained within a larger unit. Case counts and population counts were summed to the CBSA
and NECTA code level. Similarly, the percentage of each area that is considered wilderness,
municipal parks, national parks or parks and recreation budgets were aggregated by taking
the mean of smaller geographic areas up to the CBSA or NECTA levels. Activity data are not
available for every geography in each month due to the ATUS survey design. Therefore, the
final dataset is an unbalanced panel of 845 observations within 172 locations over 9 years.
In our specification described in the previous section, locations with few observations are
dropped resulting in a dataset of 670 observations in 93 locations, with an average of 7.2
observations per location. Summary statistics for the final dataset are included in Table1.

3.3 Welfare

Equations4a and 4b are similar to a Marshallian Demand function, y
(
py(L), pz,m

)
where

the price of activities is captured in the vectors xit and ci that control for the specific char-
acteristics of each area. The impact of Lyme Disease on price and the impact of price on
the quantity of outdoor activity are contained in the term δ1 L̂ + δ2 L̂2. The correct welfare
measure must account for the shift from leisure into substitute activities and is not simply
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Table 1 Summary statistics for variables

Mean Standard deviation Minimum Maximum

Confirmed Lyme cases 72.17 127.4 0 1283

Outdoor recreation (minutes) 6.01 16.6 0 210

Population 9.93 × 105 2.35 × 106 9.7 × 104 1.99 × 107

Patches of habitat 4.6 × 104 4.5 × 105 0 4.3 × 106

Max humidity (%) 90.67 5.27 40.00 99.57

Min humidity (%) 48.99 5.25 22.68 73.51

Precipitation (inches) 0.14 0.33 0 7.85

Max temperature (F) 75.36 3.75 59.20 86.25

Min temperature (F) 56.01 3.9 40.88 69.01

River area (meters per square
meter)

0.233 0.111 0.076 1.34

Land area (square meters) 4.47 × 109 4.41 × 109 3.89 × 107 2.18 × 1010

% Wilderness 0.085 0.476 0 8.27

% City parks 0.867 1.51 0 15.68

% Nat parks 0.341 1.203 0 18.541

Parks rec ($ per capita) 35.01 68.56 0.119 644.9

the value of the potentially lost quantity of outdoor activity (Gallagher and Smith 1985).
If individuals were unable to substitute away from outdoor activities to mitigate risk, or if
they lacked information on the risk in their area compensating surplus would be the correct
measure (Gallagher and Smith 1985; Smith 1987; Foster and Just 1989). We assume they
are informed by local health authorities and other information sources, so the correct mea-
sure is compensating variation (Freeman et al. 2014). Because the impacts of Lyme Disease
and price are conflated in our empirical model we are only able to estimate the consumer
surplus of a change in Lyme Disease. We observe point A in Fig. 1 with price py(L), and
our counterfactual is point B at the price of outdoor activity with no Lyme Disease, py(0).
The change in the price of outdoor recreation is py(L) − py(0), and the impact of this
change in price on demand is included in our regression (δ1 L̂ + δ2 L̂2) where δ1 and δ2 con-
tain the impact on quantity demanded from a change in the price due to a change in Lyme
risk.

We estimate the monetary value of consumer surplus using values of time from the lit-
erature. However, standard methods require time substitution into labor, but our empirical
work does not provide evidence of a shift towards labor. We conduct a welfare analysis that
mirrors a travel cost model where the value of outdoor recreation is estimated by the amount
individuals spend to travel to recreate outdoors relative to enjoying leisure at home (Freeman
et al. 2014)—the location of the most indoor leisure.

There is a possibility that individuals are substituting a less preferred leisure activity in
lieu of outdoor recreation. Assuming time not spent outdoors in the presence of Lyme is
spent at home, then the travel time for the outdoor activity reveals a willingness to pay for
the outdoor leisure activity beyond the willingness to pay for the home leisure activity. Thus,
this forgone travel represents a non-money “income” or utility effect, and can be thought of
as the additional travel time required to shift the budget curve from point A to point C in
Fig. 1. This is an estimate of the income effect, and we can value this additional time at one
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third of the wage rate, the opportunity cost of leisure time commonly used in the literature
(Cesario 1976; McConnell 1985).

4 Results

Model estimation results are shown in Table2. The first column consists of anOLS regression
with fixed effects for time and location and controlling for population. The second column
includes controls for the attractiveness of the area, including minimum temperature and
humidity as well as average precipitation. The third column uses additional available controls
for the maximum humidity and temperature, as well as river and land area, the percentage of
land that is wilderness of a municipal park, the percentage of land included in national parks
and parks and recreation budgets. These controls were initially omitted due to concerns
about their high correlation with other controls. The fourth column is the Arellano–Bond
estimator treating cases as endogenous without controls except population, but including
time fixed effects. The fifth column is the Arellano–Bond estimator with time fixed effects,
mirroring column 2, including population, minimum humidity, minimum temperature, and
precipitation (Roodman 2009).13 A final regression, using system GMM and including all
possible controls is included in column 6.

The OLS regression with controls and fixed effects (Table2, column 1), has a negative
and convex (δ1 = −0.0499 and δ2 = 7.97 × 10−5), but imprecisely estimated, relationship
between outdoor activity and the number of Lyme Disease cases. The addition of controls for
population, weather and the relative activeness of outdoor activity leads to a smaller effect
(−.0476 and 7.88× 10−5) that is also imprecisely estimated (Table2, column 2). Extending
our set of controls to include all available information (column 3) does not improve the
precision of our estimates, and we fail to reject a null of a relationship between outdoor time
and cases at all standard significance levels. The insignificant coefficients on cases are not
surprising, however, because Lyme cases in a particular year should follow time spent on
outdoor activity in that year, counteracting any adaptive response.

We find precisely estimated, negative relationships between Lyme cases and outdoor
recreation under the Arellano–Bond specifications (Columns 4 through 6 of Table2), which
account for endogenous covariates. The p values for the F-statistics for all three Arellano–
Bond specifications suggest that the models fit the data. The Hansen tests suggest that our
set of instruments is exogenous, and we fail to reject the null the Arellano–Bond test for
autocorrelation in the second lag, which provides further support for the exogeneity of our
instruments.14 The estimates for themain parameters of interest are consistent across the three
Arellano–Bond specifications. This consistency is maintained for the specification with the
full control set (Column 6) across multiple robustness checks (Appendix Table2), discussed
below.This leads us to prefer the full set of control specification.Theparameter estimates from
the specifications with fewer controls, Columns 4 and 5, are within the 95% confidence inter-
val of the full control specification, Column 6. Furthermore, all three specifications suggest a
convex relationship, which implies that marginal impact of additional cases has a diminishing
effect on the adaptive response – each additional case elicits a smaller marginal response.

13 All Arellano–Bond models use orthogonal deviations for cases as instruments, as well as a measure of the
predicted tick habitat in that geography as an additional instrument for Lyme cases.
14 The vast majority of infectious disease models are either first-order differential or difference equations
models or first-order Markov models. Therefore, theory suggests that we would not expect correlation in the
errors to persist for greater than one time period.
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Using the Column 6’s specification the average individual is expected to spend 1.54 fewer
minutes per day outdoors at the average of 72.168 cases in a geography. For context slightly
more than 56% of respondents in the dataset spend less than 1.54min on outdoor activity
per day. Our estimate is comparable to behavioral responses to the 2009 A/H1N1 pandemic
(Bayham et al. 2015). At its peak, the 2009 A/H1N1 pandemic had a peak of 9,734 new
national cases per week, and the average individual spent 22.11 additional minutes at home
(Bayham et al. 2015). In our study a geography in the 90th percentile of CDC confirmed Lyme
Disease cases has 226.8 cases per year, and individuals to spend a total of 3.22 fewer minutes
per day outdoors. However, responses to A/H1N1 were short-lived, while the response to
Lyme is persistent over a longer period.

If individuals performed more recreational activity in the last period than normal, they are
likely to spend less time in the current period, and vice versa. For each additional hour spent
on outdoor activity in the previous year, individuals spend 4.03 fewer minutes outdoors in the
current year (coefficient of 0.0672 with p value 0.003). This is suggestive of habit formation
and reversion to a mean level of activity over the long term.

4.1 Robustness Check

We estimate several alternative specifications to evaluate the robustness of the results. First,
we expand the activities considered to include those taking place close to and away from
home, shown in Table3 in the appendix. This was done by including all activities that took
place at the activity location code for one’s own backyard. With this larger sample the point
estimate is precisely estimated and the effect size is negative and of a similar order of mag-
nitude to the base dataset for our preferred specification and the no control specification,
but the relationship between case numbers and outdoor activity is not precisely estimated in
our limited controls specification (Table 4). This is evidence that individuals are consistent
in their risk mitigation activities over different areas when controlling for the variation in
neighborhood recreation opportunities.

Next, we use activities away from home partitioned into weekends only and weekdays
only. When partitioning the data set to only activity on weekends and weekdays we lose
statistical power, 620 and 619 observations respectively. For our preferred specification the
estimates are less precisely estimated (p values around 0.1), but the point estimates are of a
consistent sign and magnitude (Table 4). The limited control set does not provide consistent
estimates across datasets, and the estimates with no controls cease to be precisely estimated.

5 Opportunity Cost of Lyme Disease

We calculate the impact of living in a world with Lyme Disease risk, relative to the case
where the ecosystem disservice were eliminated, by using our parameter estimates to find
the reduced time spent on outdoor activities, and calculating the welfare cost using the most
probable alternative uses of that recreational time. Guided by theory, we know that in a riskier
world individuals are unable to attain the same utility level without a compensating shift in
their time budget.

We map the average lost minutes of outdoor recreation for the northeastern United States
from 2003 to 2012 by county based on the model predictions from our preferred specification
(Fig. 2). The largest impacts of LymeDisease on lost outdoors time is focused in three general
areas. The first is centered around Boston, Massachusetts, the second around New York City
and parts of New Jersey and Connecticut, and finally around Baltimore and Washington,

123



The Allocation of Time and Risk of Lyme: A Case of...

D.C. There are also small loci of lost outdoor activity near Minneapolis and Chicago. These
high lost levels of activity result from a juxtaposition of a large number of people and a high
number of Lyme Disease cases.

Using our parameter estimates from our preferred specification, we find that the average
individual in an average geography spent 1.54 fewer minutes outside per day in response to
an average of 72.17 CDC confirmed Lyme cases in their geography. In our study area an
average of 1.54 fewer minutes of outdoor activity per day is equivalent to 564.5 min, 9.41 h,
less of outdoor activity per year. In aggregate 206 million days of outdoor leisure are lost
per year assuming a day of outdoor leisure is 6h long.15 Alternatively, the average length of
an outdoor activity in the ATUS data is 73.21 min, implying 7.71 forgone outdoor trips per
person or 1.01 billion lost trips.

If we assume individuals respond only by spending less time outdoors (i.e., the time
vanishes so this is a pure income effect),we calculate thewelfare impact by using the intertem-
poral elasticity of labor supply. We use 2006 USD as our numeraire because 2006 is the
midpoint of the data series. Prior literature has estimated the value of leisure time of $11.27–
12.06/h in 1992USDor $16.19–$17.33/h in 2006USD (Larson et al. 2004; Larson andShaikh
2004). Using the estimated values of leisure time from Larson and Shaikh (2004) and Larson
et al. (2004) provides estimates of $20 billion and $21.4 billion (in 2006 USD) annually.

Assuming that individuals are substituting to indoor recreational activity that takes place
at home, a more reasonable assumption supported by the ATUS data, we can use the will-
ingness to travel as a measure of WTP for outdoor activity. In the ATUS dataset we observe
the amount of time individuals spend traveling before and after outdoor activities, enabling
us to exploit this information for a travel cost approach.16 Individuals in our dataset on aver-
age spend 1min travelling for every 1.92min of outdoor activity, resulting in an average of
292.48min of travel time per year. If individuals do not enjoy travel time, then this is a cost
that they face to participate in outdoor activity, and reflects a willingness to pay to substitute
away from indoor activity. We value this time at a fraction of the wage rate, as is traditionally
done in the recreation demand literature (Larson and Shaikh 2004; Phaneuf and Smith 2005).
We assume individuals work 2080h a year (40 h a week for 52 weeks) and use the median
household income reported in “Income earnings and poverty data from 2006 American Com-
munities Survey” of $48,451 (Webster and Bishaw 2007) and calculate a mean income of
ATUS respondents of $32,012 for annual wages of $23.29 and $13.00 respectively.17 One
third of these wage rates (Cesario 1976) are $7.76 and $4.33 per hour respectively, suggesting
an aggregate willingness to pay for Lyme-free outdoor opportunities of $4.97 and $2.77 bil-
lion per year respectively. It is important to note that when the substitution effect is included
the welfare impacts of Lyme Disease are an order of magnitude smaller. Individuals are able
to substitute away from the risky activity into other recreation activities. Taking into account
this change can significantly reduce welfare effects when close substitutes are available.

Our welfare estimates correspond well to the broader recreation demand literature. The
average length of an outdoor activity in the ATUS data is 73.21min long implying that the
average individual took 7.71 few outdoor trips per year due to Lyme Disease risk per year.
Our travel cost approach implies that outdoor trips were valued at $2.74 to $4.91 per trip,

15 Siderelis and Smith (2013) use an average stay length of 3h in state parks. Using their estimate, we find
an aggregate of 412 million days were lost.
16 To our knowledge this is the first time this information in the ATUS has been used for travel cost analysis.
17 The income variable in the ATUS is categorical, so we assume individuals work 2,080 h per year (40 h a
week for 52 weeks) and use a weighted average of the income variable. While the ATUS is a stratified random
sample of US households, the strata are not on income, and the survey maybe oversampling lower income
households.
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which is consistent with values commonly found in the literature (McConnell 1985; Phaneuf
and Smith 2005).

6 Conclusions

Individuals respond to risk by investing in costly self-protection or self-insurance (Shogren
andCrocker 1999).We found that individuals spent less time on outdoor recreation, and likely
more time indoors and away from ticks in response to Lyme Disease. Our risk response, 1.54
fewer minutes outside per 72.17 CDC confirmed Lyme cases, is comparable with the average
per case response to the 2009 A/H1N1 (aka swine flu) pandemic. This is likely due to the
local and persistent nature of Lyme Disease as well as the nature of the activities we are
studying. While the swine flu pandemic statistic was nationwide, individuals in our study are
responding to a local risk that is persistent.

Substitution effects play an important role in valuing the welfare losses from risk in non-
market activities. While we can clearly measure the substitution from outdoor recreation,
without an accompanying way to measure the income effect, we cannot provide reliable
estimates of the welfare effects of diminished nature-based leisure services. Measuring the
income effects is difficult and requires that the opportunity cost of an activity takes place in
such a way that it is observable and measurable.18 This is vital to avoid conflating our mea-
sured risk avoidance behavior, the substitution from outdoor recreation, with a welfare effect.
In our study, this welfare effect is the shift in the time budget that would leave individuals
just as well off as if they moved from a riskless world to a risky world. We cannot easily
measure this effect because individuals appear to shift from one leisure activity to another
leisure activity in our sample. Without a clear way to estimate the value of that second leisure
activity, we rely on the current methods in the literature of valuing time.

Ecosystems can provide both services (e.g., outdoor recreation) and disservices (e.g.,
refuge for infectious diseases). Increased Lyme Disease risk is important because individu-
als find themselves worse off, unless they have readily available and perfect substitutes for
affected leisure activities. The true costs of any good or bad are the related opportunity costs.
This is as true of infectious disease and environmental disservices as any other good or bad
produced. Lost recreation expenditures are clearly not true economic costs. Our research sug-
gests that individuals are capable of engaging in avoidance behavior by reducing one leisure
activity and engaging in another. The welfare effects of such substitution are uncertain, how-
ever recognizing that human adaptive behavior is driven by the goal of reducing utility losses,
and that lost outdoor recreation time is not a complete loss changes our welfare estimates by
an order ofmagnitude.Our research highlights important economic-ecology features of Lyme
Disease and also illustrates the care neededwhen valuing ecosystem services and dis-services.

Acknowledgements This publication was made possible by Grant Number 1R01GM100471-01 from the
National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health and NSF. Its
contents are solely the responsibility of the authors and do not necessarily represent the official views of
NIGMS. This work was also funded by NSF Grant No. 1414374 as part of the joint NSF-NIH-USDA Ecology
and Evolution of Infectious Diseases program. S.R.M was supported by the NatureNet Science Program of
The Nature Conservancy.

18 There are issues with estimating the exact welfare loss due to the availability of substitutes that are also
leisure activities. We suspect this is common in the literature where seemingly dissimilar alternative leisure
activities are not considered as substitutes (e.g., nature-based outdoor activities and indoor activities).
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Appendix

See Tables 3 and 4.

Table 3 Activities in analysis, limited to those taking place outdoors and away from home

Activity code Activity name

130 102 Playing baseball

130 103 Playing basketball

130 104 Biking

130 108 Climbing, spelunking, caving

130 110 Equestrian sports

130 112 Fishing

130 113 Playing football

130 114 Golfing

130 116 Hiking

130 118 Hunting

130 120 Playing racquet sports

130 123 Playing rugby

130 124 Running

130 126 Playing soccer

130 127 Softball

130 130 Playing volleyball

130 131 Walking

130 199 Playing sports

130 202 Watching baseball

130 203 Watching basketball

130 204 Watching biking

130 210 Watching equestrian sports

130 212 Watching fishing

130 213 Watching football

130 214 Watching golfing

130 218 Watching racquet sports

130 221 Watching rugby

130 222 Watching running

130 224 Watching soccer

130 225 Watching softball

130 227 Watching volleyball

130 228 Watching walking

130 299 Attending sporting events

130 301 Waiting related to playing sports or exercising

130 302 Waiting related to attending sporting events

130 399 Waiting associated with sports, exercise and recreation

130 401 Security related to playing sports

130 402 Security related to watching sports

139 999 Sports, exercise and recreation not included
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